Nanoscale Packing Differences in Sphingomyelin and Phosphatidylcholine Revealed by BODIPY Fluorescence in Monolayers: Physiological Implications
نویسندگان
چکیده
Phosphatidycholines (PC) with two saturated acyl chains (e.g., dipalmitoyl) mimic natural sphingomyelin (SM) by promoting raft formation in model membranes. However, sphingoid-based lipids, such as SM, rather than saturated-chain PCs have been implicated as key components of lipid rafts in biomembranes. These observations raise questions about the physical packing properties of the phase states that can be formed by these two major plasma membrane lipids with identical phosphocholine headgroups. To investigate, we developed a monolayer platform capable of monitoring changes in surface fluorescence by acquiring multiple spectra during measurement of a lipid force-area isotherm. We relied on the concentration-dependent emission changes of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-labeled PC to detect nanoscale alterations in lipid packing and phase state induced by monolayer lateral compression. The BODIPY-PC probe contained an indacene ring with four symmetrically located methyl (Me) substituents to enhance localization to the lipid hydrocarbon region. Surface fluorescence spectra indicated changes in miscibility even when force-area isotherms showed no deviation from ideal mixing behavior in the surface pressure versus cross-sectional molecular area response. We detected slightly better mixing of Me4-BODIPY-8-PC with the fluid-like, liquid expanded phase of 1-palmitoyl-2-oleoyl-PC compared to N-oleoyl-SM. Remarkably, in the gel-like, liquid condensed phase, Me4-BODIPY-8-PC mixed better with N-palmitoyl-SM than dipalmitoyl-PC, suggesting naturally abundant SMs with saturated acyl chains form gel-like lipid phase(s) with enhanced ability to accommodate deeply embedded components compared to dipalmitoyl-PC gel phase. The findings reveal a fundamental difference in the lateral packing properties of SM and PC that occurs even when their acyl chains match.
منابع مشابه
GLTP-fold interaction with planar phosphatidylcholine surfaces is synergistically stimulated by phosphatidic acid and phosphatidylethanolamine.
Among amphitropic proteins, human glycolipid transfer protein (GLTP) forms a structurally-unique fold that translocates on/off membranes to specifically transfer glycolipids. Phosphatidylcholine (PC) bilayers with curvature-induced packing stress stimulate much faster glycolipid intervesicular transfer than nonstressed PC bilayers raising questions about planar cytosol-facing biomembranes being...
متن کاملNew BODIPY lipid probes for fluorescence studies of membranes.
Many fluorescent lipid probes tend to loop back to the membrane interface when attached to a lipid acyl chain rather than embedding deeply into the bilayer. To achieve maximum embedding of BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorophore into the bilayer apolar region, a series of sn-2 acyl-labeled phosphatidylcholines was synthesized bearing 4,4-difluoro-1,3,5,7-tetramethyl-4-bo...
متن کاملInfluence of Hydroxylation, Chain Length, and Chain Unsaturation on Bilayer Properties of Ceramides.
Mammalian ceramides constitute a family of at least a few hundred closely related molecules distinguished by small structural differences, giving rise to individual molecular species that are expressed in distinct cellular compartments, or tissue types, in which they are believed to execute distinct functions. We have examined how specific structural details influence the bilayer properties of ...
متن کاملA lipid analogue that inhibits sphingomyelin hydrolysis and synthesis, increases ceramide, and leads to cell death.
We report the synthesis and characterization of a novel thiourea derivative of sphingomyelin (AD2765). In vitro assays using pure enzyme and/or cell extracts revealed that this compound inhibited the hydrolysis of BODIPY-conjugated or 14C-labeled sphingomyelin by acid sphingomyelinase and Mg2+-dependent neutral sphingomyelinase. Studies in normal human skin fibroblasts further revealed that AD2...
متن کاملOxidation of cholesterol in low density and high density lipoproteins by cholesterol oxidase.
The cholesterol oxidase-catalyzed oxidation of cholesterol in native low density (LDL) and high density lipoproteins (HDL3) as well as in monolayers prepared from surface lipids of these particles, has been examined. The objective of the study was to compare the oxidizability of cholesterol, and to examine the effects of lipid packing on oxidation rates. When [3H]cholesterol-labeled lipoprotein...
متن کامل